

भारत सरकार :: अंतरिक्ष विभाग Government of India :: Dept. of Space

सतीश धवन अंतरिक्ष केंद्र शार, श्रीहरिकोटा

भारतीय अंतरिक्ष अनुसंधान संगठन Indian Space Research Organisation

SATISH DHAWAN SPACE CENTRE SHAR Safharikota

Section: Chemical Engineering ME and M Tech

- Q.1 Molar flow rate of liquid NH₃, when it is flowing at 112 lit/min through a non-reacting continuous reactor is moles/min.
 - A. 5
 - B. 10
 - C. 0.5
 - D. 1

Ans

- ✓ 1. A
- 🗶 2. B
- X 3. C
- X 4. D

Question ID: 5834933959

- Q.2 In a shell and tube heat exchanger, the height of 25 percent cut baffles is equal to (where,
 - D= inside diameter of shell)?
 - A. 0.25 D
 - B. 0.75 D
 - C. 0.50 D
 - D. 0.01 D
- Ans X 1. A
 - ✓ 2. B
 - X 3. C
 - X 4. D

Question ID: 5834933923

- Q.3 Which one of the following defines velocity potential, φ ?
 - A. Φ , such that $u_x = \partial \Phi / \partial x$
 - B. Φ , such that $u_x = \partial \Phi / \partial t$
 - C. Φ , such that $u_x = \partial \Phi / (\partial t \partial x)$
 - D. Φ , such that $u_x = \partial \Phi/(\partial t \partial x) \times \partial \Phi/(\partial t)$

Ans 🚀 1. A

- X 2. B
- X 3. C
- X 4. D

- Q.4 The fluid flow rates and specific heats and heat capacities of the two fluids are equal. A hot fluid enters the counter flow heat exchanger at 100 °C and leaves at 60 °C. The cold fluid enters the heat exchanger at 40 °C and leaves at 80 °C. The mean temperature difference between the two fluids is
 - A. 40
 - B. 60
 - C. 45
 - D. 20

- Ans X 1. A
 - X 2. B
 - X 3. C
 - √ 4. D

Question ID: 5834933926

- Q.5 A cylindrical vessel is subjected for internal pressure, the longitudinal stress σ_l and the circumferential stress σ_h are related by
 - A. $\sigma_h = \sigma_l / 2$
 - B. $\sigma_h = 2 \sigma_l$
 - C. $\sigma_h = \sigma_l$
 - $D. \ \sigma_h = \sigma_l / \ 3$

Ans X 1. A

- ✓ 2. B
- X 3. C
- X 4. D

Question ID: 5834933969

Q.6 Cu2+ ions react with Fe2+ions according to the following reaction

$$Cu^{2+} + 2 Fe^{2+} \rightleftharpoons Cu + 2 Fe^{3+}$$

At equilibrium, the concentration of Cu2+ ions are not changed by the addition of

- A. Cu²⁺
- B. Fe²⁺
- C. Cu
- D. Fe³⁺

Ans X 1. A

- X 2. B
- √ 3. C
- X 4. D

	3	
Q.7	Water is flowing through a reducer in a horizontal pipe. The pressu	re and velocity at the
	inlet are 130 kPa and 2 m/s. Find the velocity at outlet for a pressu	re of 100 kPa
	A. 30 m/s	
	B. 60 m/s	
	C. 8 m/s	
	D. 2 m/s	
Ans	★ 1. A	
	X 2. B	
	✓ 3. C	
	★ 4. D	
		0 11 15 11 11 11
		Question ID : 5834933940
Q.8	To maximize the formation of R in the simultaneous reactions	
	$A+B \rightarrow R; r_R=2C_A^{0.5}C_B^2$	
	$A+B \rightarrow S$; $r_S=1.4C_AC_B$	
	We should have	
	A. Low C _A , low C _B	
	B. Low C _A , high C _B	
	C. high C _A , low C _B	
	D. high C_A , high C_B	
Ans	X 1. A	
	✓ 2. B	
	X 3. C	
	★ 4. D	
		Out of the ID - 5004000054
		Question ID : 5834933954
Q.9	A Carnot engine operates between 27 °C and 327 °C. If the engine pro-	oduces 300 kJ of work,
	what is the entropy change during heat addition?	
	A. 0.5 kJ/K	
	B. 1.0 kJ/K	
	C. 1.5 kJ/K	
	D. 2.0 kJ/K	
Ans	★ 1. A	
	✓ 2. B	
	X 3. C	
	★ 4. D	
		Question ID: 5834933967

 $https://cdn.digialm.com//per/g01/pub/1258/touchstone/AssessmentQPHTMLMode1//1258O22185/1258O22185S1D40/16546023843782793/31\dots\\$

Q.10 A solution of specific gravity 1.0 consists of 30% A by weight and the remaining B. If the specific gravity of A is 0.6, the specific gravity of B is

- A. 1.1
- B. 1.2
- C. 1.3
- D. 1.4

Ans X 1. A

- X 2. B
- X 3. C
- √ 4. D

Question ID: 5834933968

Q.11 The phase rule applicable to non-reacting system

- A. F=2+n+N
- B. F=2-n+N
- C. F=2-n-N
- D. F=2+n-N

Ans

- 🗙 1. A
 - **√** 2. B
 - X 3. C
 - X 4. D

Question ID : 5834933928

Q.12 In the following reaction

 $A+B \xrightarrow{k_1} R$ (undesirable) $A+B \xrightarrow{} S$ (undesirable)

Selectivity is defined as

- A. Number of mol of A converted into R/ number of mol of A reacted
- B. Number of mol of A converted into R/ (number of mol of A+number of mol of B)
- C. Number of mol of A converted into S/ number of mol of A reacted
- D. Number of mol of A converted into S/ number of mol of A converted into R

Ans X 1. A

- X 2. B
- X 3. C
- √ 4. D

Q.13	In which of the following processes, in a closed system the thermal ener	gy transferred to a	
	gas is completely converted to internal energy resulting in an increase in gas temperature		
	A. Isochronic process		
	B. Adiabatic process		
	C. Isothermal process		
	D. Free expansion		
Ans	✓ 1. A		
	★ 2. B		
	※ 3. C		
	X 4. D		
		Question ID :	: 5834933929
Q.14	Carboxymethyl cellulose (CMC) is added in detergents	to acts as a/an	
	A. Surfactant		
	B. Emulsifier		
	C. Optical brightening agent		
	D. Anti-soil redeposition agent		
Ans	X 1. A		
	X 2. B		
	X 3. C		
	✓ 4. D		
		Question ID:	: 5834933960
		Question in	300430000
Q.15	Which of the following stainless-steel variety has the highest corr	osion resistance?	
	A. Type 304		
	B. Type 304 L		
	C. Type 321		
	D. Type 316		
Ans	★ 1. A		
	★ 2. B		
	※ 3. C		
	✓ 4. D		
		0 11 12	
		Question ID :	5834933963
Q.16	Pure carbon is completely burnt in oxygen. The flue gas analysis is 70%	6 CO ₂ , 20% CO and	
	$10\%~\mathrm{O_2}$. The percent excess oxygen used is		
	A. 0		
	B. 5		
	C. 15		
	D. 20		
Ans	✓ 1. A		
	X 2. B		
	X 3. C		
	X 4. D		
		Question ID	: 5834933966
		Question ID :	. 3004900900

Q.17	A Carnot heat engine cycle is working with an ideal gas. The work pe	erformed by the gas	
	during the adiabatic expansion and compression steps W_1 and W_2 respectively		
	A. $ W_1 > W_2 $		
	B. $ W_1 < W_2 $		
	C. $W_1 = W_2$		
	D. $W_1 = -W_2$		
Ans	X 1. A		
	X 2. B		
	X 3. C		
	✓ 4. D		
		Question ID : 5834933931	
Q.18	The flooding velocity in a plate column operating at 1 atm pressure is	is 3 m/sec. if the	
	column is operated at 2 atm pressure, under otherwise identical cond	litions, the flooding	
	velocity will be		
	A. $3/\sqrt{2}$		
	B. 3/2		
	C. 1		
	D. 3/4		
Ans	·		
	★ 2. B		
	X 3. C		
	X 4. D		
		0 11 10 700	
		Question ID : 5834933971	
Q.19	What does a constant underflow in leaching imply?		
	A. The ratio of insolubles to solution varies from 1 to 2		
	B. The ratio of insolubles to solution less than 1		
	C. The ratio of insolubles to solution greater than 2		
	D. The ratio of insolubles to solution remains constant		
Ans	★ 1. A		
	X 2. B		
	X 3. C		
	✓ 4. D		
		Overtica ID	
		Question ID : 5834933947	

 $https://cdn.digialm.com//per/g01/pub/1258/touchstone/AssessmentQPHTMLMode1//1258O22185/1258O22185S1D40/16546023843782793/31\dots$

012022,	10.17 Titipo.//ouri.digidim.com//por/go 1/pdb/ 1200/todonotono//to	5essillerit@i 1111WEW0de 1// 1250022105/ 125002210551D40/ 10	
Q.20	Which one of the term gives the thermal boundary layer thickness on a laminar flow over		
	a flat plate?		
	A. $\delta = 5x/\sqrt{Re_x}$		
	B. $\delta = 5x/\sqrt{Pr}$		
	C. $\delta = 5x/(\sqrt{(Re^{1/2} pr^{1/2})})$		
	D. $\delta = 5x/(Re^{1/2}Pr^{1/3})$		
Ans	1. A		
Alis	★ 2. B		
	X 3. C		
	✓ 4. D		
		Question ID : 5834933938	
Q.21	A supersaturated solution of a sparingly soluble solute, at a concentration	n of C _o is being fed	
	to a crystallizer at a volumetric flow rate F. The solubility of solute is $C_{\mbox{\scriptsize s}}$. The output rate of	
	solids from an efficient crystallizer is		
	A. FCs		
	B. FCo		
	C. FC _o /C _s		
	D. $F C_s / C_o$		
Ans	★ 1. A		
	✓ 2. B		
	X 3. C		
	★ 4. D		
		Question ID : 5834933949	
Q.22	Hot water (1 m³/min) enters the tube side of a co-current shell and tube		
	70 $^{\circ}$ C and leaves at 50 $^{\circ}$ C. Cold oil (2 $^{\circ}$ min) with same density of wat	er and specific heat	
	of 2 KJ/kg K enters at 20 °C. What is the outlet temperature of oil?		
	A. 5 °C		
	B. 25 °C		
	C. 20 °C		
	D. 50 °C		
Ans	X 1. A		
	✓ 2. B		
	※ 3. C		
	★ 4. D		
1		Question ID : 5834933925	

Q.23	The critical speed of a trommel (N) is related to its diameter (D) as		
	A. Na $(1/\sqrt{D})$		
	B. Nα √D		
	C. Να D		
	D. Nα 1/D		
Ans	✓ 1. A		
	★ 2. B		
	★ 3. C		
	★ 4. D		
		Question ID : 5834933945	
Q.24	When the relationship between Reynold's number and friction factor	is represented by a	
	straight line, the flow is said to be	a representation by a	
	A. Isotropic		
	B. Laminar		
	C. Turbulent		
	D. Vortex		
Ans	★ 1. A		
	✓ 2. B		
	※ 3. C		
	★ 4. D		
		Ougation ID : E924022025	
		Question ID : 5834933935	
Q.25	The heat transfer by radiation from a mild steel surface is to be reduced to the reduced transfer by radiation from a mild steel surface is to be reduced to the reduced transfer by radiation from a mild steel surface is to be reduced to the reduced transfer by radiation from a mild steel surface is to be reduced to the reduced transfer by radiation from a mild steel surface is to be reduced to the reduced transfer by radiation from a mild steel surface is to be reduced to the reduced transfer by radiation from a mild steel surface is to be reduced to the reduced transfer by radiation from a mild steel surface is to be reduced to the reduced transfer by radiation from the reduced transfer by radiation from the reduced transfer by the reduced	eed by reducing the	
	emissivity of the surface. This can be best achieved by		
	A. Painting the surface black		
	B. Painting the surface white		
	C. Giving the surface a mirror finish		
	D. Roughening the surface		
Ans	X 1. A X 2. B		
	★ 2. B		
	✓ 3. CX 4. D		
	4.0		
		Question ID : 5834933924	
Q.26	As pressure approaches zero, the ratio of fugacity to pressure (f/p) fo	r a gas approach to	
	A. zero		
	B. unity		
	C. infinity		
	D. an intermittent value		
Ans	★ 1. A		
	✓ 2. B		
	★ 3. C		
	★ 4. D		
		Question ID : 5834933927	

Q.27 A piece of wood having a weight 5 kg floats in water with 60% of volume under the

liquid. The specific gravity of wood is

- A. 0.83
- B. 0.6
- C. 0.4
- D. 0.9

A 9

- Ans X 1. A
 - ✓ 2. B
 - X 3. C
 - X 4. D

Question ID: 5834933941

Q.28 For the nth tray (counted from the bottom of a distillation column), the Murphree tray efficiency is given by

- A. $\frac{Y_n Y_{n-1}}{Y_n^* Y_{n-1}}$
- B. $\frac{Y_n^* Y_{n-1}}{Y_n Y_{n-1}}$
- C. $\frac{Y_{n-1}-Y_n}{Y_{n+1}-Y_n}$
- D. $\frac{Y_{n+1}-Y_n}{Y_n^*-Y_{n-1}}$

Ans

- ✓ 1. A
 - 🗶 2. B
 - X 3. C
 - X 4. D

Question ID: 5834933946

Q.29 For reaction system given below, volume is suddenly reduced to half of its value by increasing the pressure on it. If the reaction is of first order with respect to O_2 and second order with respect to NO, what will be the change in the rate of reaction?

- 2 NO $_{(g)}$ + O_{2 $_{(g)}$} \rightarrow 2 NO_{2 $_{(g)}$}
- A. diminish to one-fourth of its initial value
- B. diminish to one-eighh of its initial value
- C. Increase to eight times of its initial value
- D. Increase to four times of its initial value

Ans

- 🗙 1. A
- 🗙 2. B
- √ 3. C
- X 4. D

Q.30	The heat ev	olved in t	he combustion	of benzene is	given b	v the equation.

 $C_6H_6 + 7.5 O_2 \rightarrow 6 CO_2 + 3H_2O$; $\Delta H = -3264.6 \text{ kJ/kmol}$

The heat energy change, when 39 g of C₆H₆ is burnt in an open container, will bekJ.

- A. -816.15
- B. -1623.3
- C. +816.15
- D. -2448.4

Ans X 1. A

- **√** 2. B
- X 3. C
- X 4. D

Question ID: 5834933965

Q.31 The flooding velocity in a plate column, operating at 1 atm pressure is 4 m/s. if the column

is operated at 4 atm pressure under otherwise identical conditions, the flooding velocity

will be

- A. 1
- B. 2
- C. 3
- D. 4

Ans X 1. A

- ✓ 2. B
- X 3. C
- 🗙 4. D

Question ID: 5834933952

Q.32 Losses for flow through valves and fittings are expressed in terms of

- A. Drag co-efficient
- B. Equivalent length of a straight pipe
- C. Shape factor
- D. Roughness factor

Ans X 1. A

- ✓ 2. B
- **X** 3. C
- **X** 4. D

Q.33 A gaseous reaction $A\rightarrow 2B+C$ takes place isothermally in a constant pressure reactor.

Starting with a gaseous mixture containing 50% A (rest inerts), the ratio of final to initial volume is found to be 1.6. The percentage conversion of A is

A. 30

- B. 50
- C. 60
- D. 70

🗙 1. A Ans

- X 2. B
- √ 3. C
- X 4. D

Question ID: 5834933958

Q.34 Which of the following in the transfer function of a CSTR, conducting a first order reaction? F= volumetric flow rate, v= volume of a reactor at steady state

- B. $\tau = \frac{F}{F + kv}$
- C. $\tau = \frac{k}{F + kv}$
- D. $\tau = \frac{F + kv}{k}$

✓ 1. A Ans

- X 2. B
- X 3. C
- X 4. D

Question ID: 5834933933

Q.35 The time constant of a first order system with resistance R and Capacitance C is

- A. R+C
- B. R-C
- C. R.C
- D. 1/(R.C)

Ans X 1. A

- X 2. B
- √ 3. C
- X 4. D

	In a laminar flow, Power(P) is proportional to (ρ =density, μ =viscosity, D=Impeller dia,		
	N = RPM)		
	A. $\rho N^2 D^5$		
	B. $\mu N^2 D^3$		
	C. $\mu N^2 D^5$		
	D. $\rho N^2 D^2$		
Ans	★ 1. A		
	✓ 2. B		
	★ 3. C		
	★ 4. D		
		Question ID : 5834933944	
		Question ID : 353733377	
Q.37	Glycerin is a by-product of the	Industry	
	A. Paint		
	B. Detergent		
	C. Oil hydrogenation		
	D. Soap		
Ans	X 1.A		
	X 2. B		
	X 3. C		
	✓ 4. D		
		Question ID : 5834933961	
Q.38	✓ 4. D	Question ID : 5834933961	
Q.38	DDT stands for		
Q.38	✓ 4. D		
Q.38	DDT stands for	methane	
Q.38	DDT stands for A. Diethyl-Diphenyl-Trichloro	methane ethane	
Q.38	DDT stands for A. Diethyl-Diphenyl-Trichloro B. Dichloro-Diphenyl-Trichloro C. Dichloro-Diphenyl-Trichloro	methane ethane methane	
Q.38	DDT stands for A. Diethyl-Diphenyl-Trichloro B. Dichloro-Diphenyl-Trichloro C. Dichloro-Diphenyl-Trichloro D. Diphenyl-Dichloro-Trichloro	methane ethane methane	
	DDT stands for A. Diethyl-Diphenyl-Trichloro B. Dichloro-Diphenyl-Trichloro C. Dichloro-Diphenyl-Trichloro D. Diphenyl-Dichloro-Trichloro X1.A	methane ethane methane	
	DDT stands for A. Diethyl-Diphenyl-Trichloro B. Dichloro-Diphenyl-Trichloro C. Dichloro-Diphenyl-Trichloro D. Diphenyl-Dichloro-Trichloro *1.A *2.B	methane ethane methane	
	DDT stands for A. Diethyl-Diphenyl-Trichloro B. Dichloro-Diphenyl-Trichloro C. Dichloro-Diphenyl-Trichloro D. Diphenyl-Dichloro-Trichloro *1.A *2.B *3.C	methane ethane methane	
	DDT stands for A. Diethyl-Diphenyl-Trichloro B. Dichloro-Diphenyl-Trichloro C. Dichloro-Diphenyl-Trichloro D. Diphenyl-Dichloro-Trichloro *1.A *2.B	methane ethane methane	
	DDT stands for A. Diethyl-Diphenyl-Trichloro B. Dichloro-Diphenyl-Trichloro C. Dichloro-Diphenyl-Trichloro D. Diphenyl-Dichloro-Trichloro *1.A *2.B *3.C	methane ethane methane	

- 07/06/2022, 18:17
 - Q.39 In a 1-1 pass floating head type shell and tube heat exchanger, the tubes (OD-25 mm,
 - ID-21 mm) are arranged in a square pitch. The tube pitch is 32 mm. The equivalent

diameter (Deq) is

- A. $\frac{1024 (\pi 625)}{25\pi}$
- B. $\frac{1024 (\pi/4)625}{25\pi}$
- C. $\frac{4(1024-\left(\frac{\Pi}{4}\right)625)}{32\pi}$
- D. $\frac{4(1024 \left(\frac{\Pi}{4}\right)625)}{25\pi}$
- Ans X 1. A
 - X 2. B
 - X 3. C
 - √ 4. D

Question ID: 5834933970

- **Q.40** The transfer function of a process is $1/(16s^2+8s+4)$. If a step change is introduced into the system, then the response will be
 - A. Underdamped
 - B. Overdamped
 - C. Critically damped
 - D. None of the above

Ans

- **√** 1. A
- 🗶 2. B
- **X** 3. C
- X 4. D

Question ID: 5834933934

- Q.41 For a first order isothermal chemical reaction in a porous catalyst, the effectiveness factor
 - is 0.3. The effectiveness factor will increase if the
 - A. Catalyst size is reduced or the catalyst diffusivity is increased
 - B. Catalyst size is reduced or the catalyst diffusivity is reduced
 - C. Catalyst size is increased or the catalyst diffusivity is increased
 - D. Catalyst size is increased or the catalyst diffusivity is reduced

Ans

- 🥠 1. A
- X 2. B
- X 3. C
- X 4. D

0/2022,	10.17 https://curr.digiaim.com//per/go1/pub/1250/loudistoffe/Assessmentgi 111WiEwode 1//1250022105/1250022105/105010		
Q.42	Which of the following crushing laws is most accurately applicable to the fine grinding of		
	materials?		
	A. Bonds crushing law		
	B. Kicks law		
	C. Rittingers law		
	D. Ficks law		
Ans	★ 1. A		
	★ 2. B		
	→ 3. C		
	★ 4. D		
	Question ID : 5834933943		
	Question ID . 3034333343		
Q.43	An equimolar saturated vapour mixture of A (more volatile) and B at 1 atm is subjected to		
	equilibrium condensation to yield 50 mol% of the feed as liquid. If the relative volatility (α)		
	is constant, the mole fraction of A in the equilibrium vapour phase is equal to		
	A. $\frac{\sqrt{\alpha}}{1+\sqrt{\alpha}}$		
	B. $\frac{1}{\sqrt{\alpha}}$		
	C. $\frac{1}{1+\sqrt{\alpha}}$		
	D. $\frac{1+\sqrt{\alpha}}{\sqrt{\alpha}}$		
Ans	✓ 1. A		
	★ 2. B		
	X 3. C		
	★ 4. D		
	Over the U.D.		
	Question ID : 5834933948		
Q.44	For a zero-order reaction, the slope of t _{0.5} and C _{AO} is		
	A. 0		
	B. 1		
	C. 2		
	D. 3		
Ans	★ 1. A		
	✓ 2. B		
	★ 3. C		
	★ 4. D		
	Question ID : 5834933953		

Q.45 In the layout plan for a vacuum distillation unit, operating at 200 mm Hg, supported by a barometric condenser, the appropriate place for the location of vacuum drum for collecting

the distillate will be

- A. At ground level
- B. 4 m above ground
- C. 8 m above ground
- D. 6 m above ground

Ans X 1. A

- X 2. B
- √ 3. C
- X 4. D

Question ID: 5834933950

Q.46 Fermentation of molasses to produce ethyl alcohol is done at ____OC

- A. 20-30
- B. < -5
- C. 250-300
- D. 100-150

Ans 🚀 1. A

- X 2. B
- X 3. C
- X 4. D

Question ID: 5834933962

What is the geometric mean of two heat transfer areas A1 and A2?

- A. $\sqrt{A1 X A2}$
- B. $\sqrt{A1 + A2}$
- C. $\frac{1}{2}\sqrt{A1 \ X \ A2}$
- D. $2\sqrt{A1XA2}$

Ans 🥒 1. A

- X 2. B
- X 3. C
- X 4. D

Q.48	The solubility of Ba (NO ₃) ₂ is 34 g/100 g of H ₂ O at 100 °C and 5 g/100 g	of H ₂ O at 0 °C. In
	an experiment, 100 g of Ba (NO ₃) ₂ is dissolved to form saturated solu	ation, how much it
	precipitates out at 0 °C	
	A. 55 g	
	B. 65 g	
	C. 75 g	
	D. 85 g	
Ans	★ 1. A	
	X 2. B	
	X 3. C	
	✓ 4. D	
		Question ID : 5834933951
Q.49	Dispersion of a gas through liquid is done b	by using a
	A. Sparger	
	B. Kneader	
	C. Masticator	
	D. paddle	
Ans	✓ 1. A	
	★ 2. B	
	※ 3. C	
	★ 4. D	
		Question ID : 5834933942
Q.50	For a flow between two stationary parallel plates, if the velocity distrib	oution is parabolic,
	the mean velocity is equal to	
	A. Maximum velocity	
	B. Half the maximum velocity	
	C. One-third of maximum velocity	
	D. Two-third of maximum velocity	
Ans	★ 1. A	
	X 2. B	
	※ 3. C	
	✓ 4. D	
		Question ID : 5834933937